Interior-point Methods for Nonconvex Nonlinear Programming: Convergence Analysis and Computational Performance

نویسندگان

  • HANDE Y. BENSON
  • DAVID F. SHANNO
چکیده

In this paper, we present global and local convergence results for an interior-point method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an `1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interior-point method [12]. The global convergence of the algorithm is proved under mild assumptions, and local analysis shows that it converges Q-quadratically for a large class of problems. The proposed approach is the first to simultaneously have all of the following properties while solving a general nonconvex nonlinear programming problem: (1) the convergence analysis does not assume boundedness of dual iterates, (2) local convergence does not require the Linear Independence Constraint Qualification, (3) the solution of the penalty problem is shown to locally converge to optima that may not satisfy the Karush-Kuhn-Tucker conditions, and (4) the algorithm is applicable to mathematical programs with equilibrium constraints. Numerical testing on a set of general nonlinear programming problems, including degenerate problems and infeasible problems, confirm the theoretical results. We also provide comparisons to a highly-efficient nonlinear solver and thoroughly analyze the effects of enforcing theoretical convergence guarantees on the computational performance of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods

The paper extends prior work by the authors on LOQO, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher o...

متن کامل

A QQP-Minimization Method for Semidefinite and Smooth Nonconvex Programs

In several applications, semideenite programs with nonlinear equality constraints arise. We give two such examples to emphasize the importance of this class of problems. We then propose a new solution method that also applies to smooth nonconvex programs. The method combines ideas of a predictor corrector interior-point method, of the SQP method, and of trust region methods. In particular, we b...

متن کامل

Primal-Dual Interior Methods for Nonconvex Nonlinear Programming

Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does not tend to zero, but the step length...

متن کامل

An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness

Many real-world optimization models comprise nonconvex and nonlinear as well as nonsmooth functions leading to very hard classes of optimization models. In this article a new interior-point method for the special but practically relevant class of optimization problems with locatable and separable nonsmooth aspects is presented. After motivating and formalizing the problems under consideration, ...

متن کامل

A Primal-Dual Exterior Point Method for Nonlinear Optimization

In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002